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Abstract 

The application of deformation calorimetry to the study of polymer structure and 
properties has appeared to be rather successful. However, up until now, most of the theories 
and experiments have dealt with mainly uniaxial stretching. Nevertheless, study of the simple 
shear deformation mode is valuable both for theory and applications. The theoretical 
thermodynamic description of simple shear deformation for polymer rubbers and glasses is 
presented. The application of the results obtained to the investigation of adhesion and 
fibre/matrix interphase phenomena for, respectively, polymer adhesive interlayers and com- 
posite materials is considered. 
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1. Introduction 

Solid state deformation is usually described in the framework of pure mechanical 
parameters. However, any deformation is a thermodynamic process, characterized 
by full-scale changes in thermodynamic potentials (mechanical, free internal ener- 
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gies, etc.). For an experimentalist, this requires the simultaneous measurement of 
both the mechanical and heat effects accompanying the deformation processes. This 
thermal analysis of the deformation processes contains important information 
about the molecular structure of a solid. Most of the thermodynamic experiments 
were performed in the uniaxial extension-contraction deformation mode only; in 
addition, the thermodynamic description is best developed for this case. Unfortu- 
nately, the simple shear deformation mode has, up until now, been beyond the 
scope of researchers. Nevertheless, because of its unique feature concerning a priori 
zero-volume changes in the course of deformation, simple shear study may con- 
tribute substantially to the understanding of the thermoelasticity of network and 
solids. Moreover, this is valid for many practical cases, for example, while studying 
adhesion in substrate/polymer adhesive systems and the fibre/matrix interface in 
composite materials. 

It is the purpose of the present study to give theoretical consideration to the 
simple shear deformations of polymer rubber and glassy interlayers and their 
applications in adhesion and composite interface study. 

2. Polymer networks 

2.1. Equations of state 

The thermoelastic behaviour of polymer networks (as well as polymer glasses) is 
described by relationships derived with the aid of an appropriate analysis of the 
equation of the state. A number of theories have been developed to describe the 
network elastic behaviour, the affine deformation and phantom network models 
being the two limiting cases [ 11. 

This phantom-like idealization does not take into account the intermolecular 
interaction and may be valid only for highly swollen networks. The intermolecular 
interaction is accounted for in the model of trapped entanglements [2]. Further- 
more, a “constrained-junction” model has been developed [3], based on the 
Ronca-Allegra idea that, in the first approximation, all intermolecular interactions 
are concentrated at the junctions [4]. The Flory-Erman theory and its modifica- 
tions (for example, Refs. [5] -[7]), unites the two extreme cases providing the 
transition from an affine to a non-affine strain deformation and, thus, a quantitative 
interpretation of the real network elastic behaviour. The validity of this model was 
also confirmed in deuterium nuclear magnetic resonance experiments [8]. Another 
important approach to describe rubber elasticity are slip-link models [9] and their 
developments (for example, Refs. [lo] and [ 111). Modern rubber elasticity theories 
also account for the influence of the molecular weight distribution of the network 
chains [ 121, the existence of network defects, such as weak inhomogeneities in the 
cross-link density [ 131, polydispersity (in the framework of the mechanical random 
central force network model [ 14]), the network swelling behaviour (for example, 
Ref. [ 15]), etc. Unfortunately, most of the modern rubber elasticity theories were 
developed for the simple extension deformation mode, with only a few exceptions 
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concerning tension (for example, Refs. [ 161 and [ 17]), pure shear [ 181, torsion 
[19-211 and simple shear [22]. 

The global mechanical properties of the network for various modes of deforma- 
tion are reasonably well accounted for by the universal approach of van-der-waals- 
conformation gas networks with weak interactions [23-251. This approach uses the 
well-known analogy between an ideal gas expansion and rubber deformation and 
allows the intermolecular interaction to be taken into account by introducing a 
“global interaction parameter”. Briefly, an unfilled van der Waals network is 
characterized by three parameters: the maximum strain &,,, the mean molecular 
weight of the stretching invariant unit MU, and the empirical parameter a, which 
characterizes the global intermolecular interaction. The modified theory [ 26,271 
accounts for the contribution of the loading by introducing the parameters, 
characterizing filler cluster distribution and filler-to-filler and filler-to-matrix inter- 
action. From the physical point of view, this approach takes into account the local 
“liquid” network properties as well as the cooperative character of interchain 
intractions. It appears to be rather successful for explaining stress-strain depen- 
dences in the range of both minute and small deformations and in the non-Gaus- 
Sian area [28] for all deformation modes. 

2.2. Thermoelasticity 

It would be very attractive to analyse some of the latest equations of state for the 
rubber elasticity in the framework of the chosen approach; however, as mentioned 
above, at present we do not have a more informative equation of state for the 
simple shear deformation mode than the expression from the classical theory of 
elasticity for Gaussian networks under the action of the tangential component of 
the shearing force. Theoretical and experimental description of the rubber thermoe- 
lasticity were obtained by theoretical and experimental study of the temperature 
dependence of the elastic deformation-force/torque patterns [29-311 (let us call this 
the “classical analysis of the rubber of 
state in the framework 

included in the 
initial of the state, while in the second it is accounted 

framework of 
the second, and vice versa [27]. 

Because the thermodynamic approach provides direct relationships 
energetic it is preferable for the 

thermoelasticity predicted theoretical dependences may be easily and 
with the aid of the stretching calorimeter [25,32] (the 

direct measurement energetic effects are an added advantage 
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dynamic approach). Most impressive and informative results were obtained by 
application of the above approach to thermoelastic analyses of the simple extension 
deformation mode [21,23-27,321. For example, in Godovsky’s approach [21,32] the 
initial equation of state from the classical rubber elasticity theory [I] is analysed 

j-/A =K(1+1-2) (1) 

wherefis a retraction force, acting 

<Q/4p,T in uniaxial extension (or compression) (Fig. l(a)). The following 
physical ideas are implicit in these expressions. 

(i) The volume change accompanying extension, d V, is the responsible for the 
contribution of intermolecular effects to (Q/m)P,T and (U/m),,, 

(ii) Contributions of intra- and intermolecular interactions to (Q/wz)~,, and 
internal energy, U = Q + W, (U/m)p,, can be separated mathematically. 

(iii) As a result of competition between intra- and intermolecular effects, the 
dependence of (Q/m),,, on 1 (or E = 1 - 1) must exhibit the so-called “inversion 
point”, at which initial endothermic effects change into exothermic ones. It is to be 
emphasized that such inversion may be observed in polymer networks in principle 
only in extension as far as, in general, a > 0 and (PI = 1.5 x 10 - 3K-‘, and the 
internal rotation in flexible-chain polymers is hindered. (Here CI = -d ln(p/dT) is 
the bulk thermal expansion coefficient, p is the density, and p = d ln( (ho2)/d7) is 
the temperature coefficient of the mean square, end-to-end dimensions of unper- 
turbed macromolecules). 

In the thermoelastic behaviour of polymer networks in torsion, the corresponding 
volume change, 6 V,,,, varies as the square of relevant deformation parameter, Y 
(here Y ( = 41) is the torsion parameter, I is the length of a cylindrical sample, and 
4 is the angle of twist), whereas in the case of uniaxial extension, the volume change 
accompanying extension, 6 V,,,, is proportional to 1, so that 6 V,,, << 6 V,,, [20]. 
Thermodynamic analyses of the torsion were carried out using both the “classical” 
[20] and “thermodynamic” [21] approaches. A comparison of the thermoelastic 
behaviour for simple extension and torsion deformation modes [33] leads to the 
following characteristic features of the thermoelasticity of polymer networks in 
torsion. 

(i) The absence of “thermoelastic inversion” phenomena. 
(ii) The independence of the ratio of the energetic component to the total torque 

on the torsion parameter, Y. 
It was shown elsewhere [21,27,34], that the volume changes in the course of the 

deformation are crucial in the treatment of both the elastic and thermoelastic 
behaviour of polymer networks. So, it would be interesting to compare the 
thermoelastic behaviour in simple uniaxial extension, torsion and simple shear 
deformation modes, which are characterized, respectively, by meaningful, very 
small, and zero volume changes. 
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.(a) 

J 
Fig. 1. Energetic effects of deformation of polymer networks (schematic). (a) Uniaxial stretching (at 

B < 0). (b) Isobaric-isothermal simple shear. Curves 1, mechanical work; curves 2, heat; E, = li - 1, the 

inversion point. 

The thermoelastic analyses of the equilibrium extension and compression should 
also be mentioned [27]. 

2.3. Simple shear thermoelasticity 

As already mentioned, the early experimental results of Meyer and van der Wyk 
established the absence of thermoelastic inversion phenomena for simple shear 



40 A. Tregub, V.P. PrivalkolThermochimica Acta 247 (1994) 35-54 

deformation [ 11. This experimental observation was supported by theoretical analy- 
sis, carried out in accordance with the “classical approach” [22]. It was shown that 
for simple shear, the ratio fs, /f, obeys the equation 

A_, lfxy = -(7PWWWP,I,,6 + aT (2) 

(KY IWP,lo,~ = M(B - a) (3) 

where f, is the total tangential component of the shearing force and f,, the 
corresponding energetic contribution, and 4 is the angle of the slope of the lateral 
face of the sample, I,,, subjected to shear stress. 

These expressions bear resemblance to the respective expressions for the torsion 
case. One can explain this fact by the similar character of the volume changes 
during simple shear and torsion deformation [33]. 

The above approach, however, does not take into consideration the normal 
component of the shearing force; nor were the equations relating directly the 
energetics of the deformation to the shear deformation parameter 4 derived. 

In our previous work [33] we tried to derive a theoretical description for the 
simple-shear thermoelastic deformation for polymer networks. It would be very 
attractive to analyse some of the latest equations of states for rubber elasticity in 
the framework of the chosen approach: however, at present the only equation of 
state for the simple shear deformation mode is that obtained from the classical 
theory of elasticity for Gaussian networks under the action of the tangential 
component of the shearing force 

G = tXY /tan 4 (4) 

where G is the shear modulus, t, is the tangential stress, and C$ is defined above. 
Starting from the equation of state (4), using the ideal gas-classical Gaussian 

networks analogy and the analogy from Maxwell’s thermodynamics transforma- 
tion, we arrived at expressions for the energetic effects under isothermal conditions 
of simple shear (Fig. l(b)) 

(W/m) = (G/2p) tan*4 (5) 

(Q/m)V,T = -(G/2~)(1 -BT) tan24 (6) 

(u/W)., = P (7) 

The set of equations, (5) -( 7), is only valid for a purely entropic intramolecular 
origin of the restoring force, the idea of which was accepted in the classical 
“gas-like” theory of rubber elasticity. In accordance with the applied “thermo- 
dynamic approach”, the contribution of the intermolecular effects was accounted 
for by a “liquid-like” rubber thermal expansion, i.e. V = V(T), which leads to the 
following expression for heat and internal energy of the isothermal-isobaric simple 
shear deformation 

(Q,, /m)P,T = -(G/~P)( 1 + UT - PT) tan*4 

(KY/W),, = -UT + PT 

(8) 

(9) 
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The expressions (5), (8) and (9) describe the simple shear thermoelasticity at fairly 
small deformations when the tangential component of the total shear stress domi- 
nates. The contribution of the normal component to simple shear energetic effects 
was also accounted for. As a result, general thermodynamic equations for polymer 
networks in the isobaric-isothermal regime of simple shear, accounting for the 
contributions of both the tangential and normal components of the shear stress, 
were obtained [33] 

(w,,/m)p,~ = (G/~P)(MW(~) 

(QxxhP,,~ = (G/~PNo/~)( 1 + MT - P?(4) 

where 

(10) 

(11:) 

+ ln[ tan 4 + ( 1 + tan2 4) ‘12]} (12) 

where b is the specimen width (along the shearing force direction). The validity of 
the developed description was proved in thermoelastic experiments with natural 
rubber samples in both simple shear and uniaxial stretching deformation regimes 

[331. 
Compared to Eqs. (5)-(9), Eqs. (10) and (11) reveal the following features. 
(i) The energetic effects depend on samples dimensions, i.e. b. 
(ii) The energetic effects increase with the deformation parameter tan 4, not as a 

square parabola, tan2 $J, but as a more complex function, D(4) (or as a cubic 
parabola, tan3 4, in the range of intermediate deformations). 

From the above analyses one can see that the thermoelastic behaviour of real 
polymer networks in simple shear is fundamentally different from that in simple 
extension where competition between intramolecular and intermolecular interac- 
tions leads to a “heat inversion” phenomenon. However, there is a rather close 
similarity to equations describing the torsion case, e.g. as in the shear case, the ratio 
(Q/W),, does not depend on the deformation parameter and, hence, thermoelastic 
inversion will not occur (Fig. l(b)). 

Having compared Eqs. (5) -( 7) and (6) -( 9) one can readily obtain Eqs. ( 13) and 
(14) to characterize the heat effects and internal energy originating from the volume 
changes 

<Q/w>,, = (Q/W,,to,, - tQlW)v,T,r,,~ = -a (13) 

(~/w),y=(~/~)~,~,,~,~-tu~w)V.T.~~~d = -aT (14) 

The last relationship is a natural result of the idea accepted here concerning the 
description of the real network properties by introducing the I/ = V(T) dependence. 
A more detailed discussion of Eqs. (13) and (14) is given elsewhere [33]. 

Further analysis of Eqs. (5)-( 12) makes it possible, in principle, to separate 
contributions from intramolecular and intermolecular interactions, containing 
terms with txT and BT, respectively. For example, a salient feature of the simple 
shear regime as compared to uniaxial extension [21,32], biaxial extension [35] or 
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equilibrium extension and compression [27], is the independence of the contribution 
from intermolecular interactions to the deformation parameter. 

3. Polymer glasses 

As with polymer networks, a thermodynamic theory for the deformation be- 
haviour of polymeric glasses in simple shear regimes is so far lacking. The most 
straightforward approach to a theoretical description of the thermoelastic proper- 
ties of polymers is also based on the “thermodynamic approach” i.e. on the analysis 
of appropriate equations of state. 

3.1. Equations of state and thermoelasticity 

Most of the thermoelastic experiments with polymer glasses have been carried out 
in the simple extension deformation mode [21,36]. The experimental data at fairly 
small deformations are reasonably well accounted for by the classical theory of 
thermoelasticity for the solid [ 371. Thermoelasticity inversion phenomena (the salient 
feature of the simple extension deformation mode for polymer networks) are not 
observed in this case; rather, the heat deformation dependence has a linear pattern 
(Fig. 2(a)). The special deformation behaviour in polymer glasses for simple extension, 
torsion [ 381, compression [39] and, also, simple shear [40,41] regimes is concerned 
with irreversible plastic deformation phenomena starting at very small deformations 
(E z 0.7%-l%). A brief review of modern plastic flow theories is contained in Ref. 
[42]. It was shown that the free volume change in the course of deformation is also 
an important aspect of glass thermoelasticity. The conclusion was confirmed in 
experiments on the release of “physical ageing” at different deformation modes [43]. 

Thermoelasticity theories for polymer glasses and networks can be united in the 
framework of a phenomenological model, using a classical network model to interpret 
the deformation behaviour of glasses [36]. Suggesting that quasi-static plastic 
extension of a glass occurs without producing defects, introducing the strain-depen- 
dent modulus and using a “network” equation of state for the simple extension [ 1,211, 
the authors derived the expression for the total strain energy which contains two 
separate terms, namely, “energy” and “network” (conformation) terms. The energy 
term contribution dominates at small and intermediate deformations, while large 
strain deformation is governed by the conformation term. The results of thermoelastic 
measurements for the simple extension mode were in good accordance with the 
proposed model, both in “pre-necking” and “post-necking” (plastic) areas. 

Summarizing, we may conclude that at present there is neither a thermodynamic 
theory, nor sufficient experimental data concerning the thermoelasticity of simple 
shear for polymer glasses. 

3.2. Simple shear thermoelasticity 

Expressions describing the energetic effects in the course of simple shear deforma- 
tion for polymer glasses were obtained [42] using the “thermodynamic approach”. 



43 4. Tregub, V.P. PrivalkolThermochimica Acta 247 (1994) 35-54 

(b) 

Fig. 2. Energetic effects of deformation of polymer glasses (schematic). (a) Uniaxial stretching (at 

cq > 0). (b) Isobaric-isothermal simple shear. Curves 1, mechanical work; curves 2, heat. 

Having started from the classical equation of state of a solid subjected to the action 
of a shearing stress CT 

CT =G(l +a,T)tan+ (1% 

where G is the shear modulus and a, is the linear thermal expansion coefficient, and 
using the same algebra as in the case of polymer networks, we arrived at the scaling 
form expressions for the isothermal-isobaric conditions under the action of tangen- 
tial and normal components of the shearing stress 

(w/m) = (G/Q) J’(4) (16) 
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<Qhh = Wlm)p,~l T (17) 

(u/W),, = 1 + @,T (18) 

where Y(4) = tan2 C$ for the tangential component and Y(4) = (1,/2b)D($) for the 
normal component of the shear stress (Fig. 2(b)). It follows from Eq. (18) that for 
the simple shear of polymer glasses, there is no thermoelastic inversion, as in the 
network case. Because LX, < lop4 K- ’ for the majority of polymeric glasses [42], the 
heat effects accompanying simple isothermal shear should not be large, Eq. (17). 
The theory was verified in deformation calorimeter experiments with polystyrene 
samples [ 421. 

The above theory is only valid for reversible (elastic) deformation. To extend the 
theory to plastic deformation, it is possible to apply the phenomenological model 
[ 361, introducing the conformation “network” term U = (l/2) G tan2 4 and the 
strain-dependent shear modulus G = G(tan 4) 

G(tan 4) = Go exp{ -[tan 4 - l]/[(tan 4), - l]} (19) 

in the same way as was done for the simple extension modulus [36] (here (tan $), 
is the deformation “quasi’‘-yielding point). We are planning to develop these ideas 
in the future. 

4. Adhesion 

An interesting application of the above thermodynamic description of simple 
shear deformation, which up to now was beyond the scope of researchers, is a 
thermodynamic study of the adhesion properties of polymer interlayers, from both 
the fundamental and applied points of view. 

4.1. Adhesion theories and methods 

There are many physical and chemical concepts of adhesion mechanism [M-46]; 
however, until now, there has been no unified adhesion theory [47]. Naturally, an 
absence of a unified approach to the explanation of adhesion phenomena hinders 
the introduction of a universal parameter characterizing the adhesive strength (AS) 
of an adhesive joint (AJ). Further complications are concerned with the existence of 
different microdefects in the interfacial zone and, also, with the irreversibility of the 
failure process (which, itself, is in contradiction with the general definition of 
adhesion as a reversible phenomenon [46]). Moreover, most technical adhesion 
experiments (shearing, peeling at different angles, normal detachment, ply separa- 
tion, torsion [48], pull-out scratch [49], etc., mechanical tests) are carried out under 
thermodynamically non-equilibrium conditions, the same being true for the new 
atomic force microscope technique [50], which determines the adhesion of the 
particles (in spite of the low debonding rate of the method). Meanwhile, these 
non-equilibrium adhesion evaluations are incorrect in principle [46]. Blister adhe- 
sion tests [51], which do not deal with the mechanical separation of an adhesion 



A. Tregub, V.P. Privalko/Thermochimica Acta 247 (1994) 35-54 45 

layer from the substrate should also be mentioned, although the injection of liquid 
at the interface can change this. 

It is worth noting that for all deformation modes of testing the adhesion, one 
must also consider the influence of the so-called “deformation component of 
adhesive strength” which depends mostly on the bulk viscoelastic properties of the 
adhesive itself [47,52]. 

Equilibrium thermodynamic methods based on study of the interfacial tension 
seem to be more correct [46,53,54]. However, in this case too, the contact angle of 
wetting depends on the viscoelastic properties of the adhesives [55] (another 
disadvantage of the method is the necessity of eliminating the dissolution of the 
substrate and any adsorption from the liquid or gaseous phase [56]). Moreover, 
there is no strict connection between AS and wetting angle [46]. 

The group of AJ non-destructive test methods is also characterized by the 
dependence of the obtained AS estimates on the volumetric and surface properties 
of adhesives [44,57]. 

Following from the analysis, it is important to take into account the contribution 
of the adhesive viscoelastic properties to the integral energy characteristics of the AJ 
deformation process. 

4.2. Thermodynamics of the shear deformation of adhesive joints 

One can expect that simultaneous measurement of the mechanical and heat effects 
involved in the deformation and failure of adhesive joints will contribute to a solution 
of this problem. For example, let us consider the AJ shear deformation. In the 
standard scheme of the AJ shear test (Fig. 3) obviously, the stage of irreversible 
adhesion or cohesion failure is preceded by the stage of reversible shear deformation 
of the adhesive, which is responsible for the appearance of the AS deformation 
component. For a thermodynamic description of the shearing rubber AJ deforma- 
tion, one can try to apply expressions (5) and (8)-( 12). The fact, that for simple 
shear deformation the concomitant mechanical work and heat have different signs, 
suggests that the viscoelastic contribution of an adhesive can be separated. 

Fig. 3. Standard scheme of the shearing adhesion test: 1, substrate; 2, adhesive interlayer. 



46 A. Tregub, V.P. PrivalkolThermochimica Acta 247 (1994) 35-54 

-10 

-12 I , I I I i 
0 1 2 3 4 5 8 

y in mm 

Fig. 4. Deformation dependence of the reduced heat 0, open circle of the “metalLadhesive interlayer- 

metal” adhesive joint: -, calculated curve; 0, experimental curve; ---, normal component contribu- 

tion; A, adhesive joint failure. 

Experiments of this type have been performed [ 33,481 for “metal-uncured rubber 
adhesive-metal” systems. A solution of uncured butyl rubber with additives in 
polar solvents served as the adhesive layer. The AJ deformation energetics was 
studied in the deformation microcalorimeter (using the method of continuous and 
step-by-step shear with different shear rates). 

The dependence of the reduced mechanical work W/m on the squared deforma- 
tion parameters tan2 4 = (y/&-,)’ was linear over practically the whole range of 
shears up to the AJ complete failure (at y = 4-7 mm). This testifies to the physical 
structurization of the uncured adhesive layer and the applicability of expressions (8) 
and (9) (which characterize the behaviour of the polymer networks), for the 
description of the thermodynamics of shear. 

The calculated curves for the reduced heat (Q/m)calc(y) (Fig. 4, solid line) are 
close to the parabolic dependence predicted by Eq. (9). (In Eq. (9), for the adhesive 
layer being studied, we assumed LX = 5 x lop3 K-’ and p = 1 x lop3 K-‘; here a 
was determined from the Simha-Boyer relation [48], while /I was determined by the 
least-squares fit of the experimental values of the reduced work W/m.) The obtained 
experimental dependence (Q/m),,,(y) (Fig. 4, circles), up to the values ylim z 1 mm, 
shows a rather good agreement with the calculated dependences; however, at 
y > Ylim the experimental curve deviates from the calculated one towards higher 
exoeffect values. Such deviation cannot be connected with the effects of the limited 
extensibility of networks (which are similar to the effects which occur in the case of 
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uniaxial extension of the networks, for the description of which Mooney-Rivlin- 
type [l] potentials have been introduced, because there is no chemical network in 
uncured rubber. However, accounting for the considerable (at large y values) 
contribution of the normal component of shear to the thermal effects of deforma- 
tion (for the current thickness of the adhesive layer, 1, = 0.05 mm) does not allow 
the experimental curve to be described as well (broken line). It must be assumed 
that the exothermic processes of failure of the metal-adhesive-interlayer-metal AJ, 
which take place simultaneously with the adhesive shear deformation process, bear 
the responsibility for the deviation of the experimental deformation dependences of 
heat from the calculated ones. Then the (Q/m),,,,,(y) dependence, due to AJ failure, 
at the initial stage of the failure can be determined graphically by subtracting the 

(Q/~),,,(Y) curve from the (Q/%&Y) curve (Fig. 4, triangles), where Ylim is the 
thermodynamic criterion for the onset of the AJ failure process. 

It is pertinent to underline that we failed to determine either the viscoelastic 
contribution or the Yiim value from the deformation dependence of the reduced 
work alone, which did not reveal any inflection over the whole range of y. This 
observation can be explained by the similar (parabolic) character of the above 
dependence for the irreversible process of adhesive failure and reversible shear 
process. 

5. Fibrejmatrix interphase in polymer composite materials 

It is well known that the level of fibre/matrix adhesion influences strongly the 
ultimate mechanical properties of fibre-reinforced polymer composite materials. 
There have been some attempts to explain this influence, although only the 
interphase concept, i.e. a three-dimensional region between bulk fibre and matrix, 
has been successful. The interphase includes the two-dimensional contact area 
between fibre and matrix (the interface): interface penetration fibres and matrix has 
also been demonstrated [58]. It is now widely accepted that the fibre/matrix 
interface is one of the most important factors controlling both the mechanical 
properties of the composite and its enviromental stability [59]. 

5. I. Methods for observing inter-facial phenomena 

The mechanical properties of the interface are characterized mainly by the 
interfacial shear strength, 6, between the fibre and the surrounding matrix [60]. The 
methods for evaluating interface properties can be divided into the so-called 
“direct” and indirect approaches. Indirect methods include 3-point bending of a 
single-fibre specimen (SFS) with a small aspect ratio, interfacial crack propagation 
in SFS under a compressive load, and methods based on dynamic mechanical, 
ultrasonic wave, and acoustic and photoelastic analyses [58,61]. Laser Raman 
spectroscopic techniques for both isotropic and anisotropic fibre are described 
elsewhere [62,63]. The fibre wettability method [64] allows the fibre surface energy 
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to be evaluated; however, it does not consider the fibre/matrix interaction. In fact, 
indirect methods can only be used for comparative analysis. 

The group of “direct” methods includes the single-fibre (SF) fragmentation test, 
SF microindentation and pull-out tests, and microbonding. Briefly, fragmentation 
tests are carried out with SFs embedded in the matrix. Under the loading, either in 
tension or compression [65], the SF fails, the failure process being developed until 
some critical SF saturation length. It is worth noting [66] that the interface 
properties are not measured directly in this test either; rather, a shear-lag analysis, 
based on the fibre fragmentation length distribution, is carried out on the SF 
fragments. In the microindentation test, a probe pushes a fibre out from a 
supporting matrix, and the pushing force and path are registered. The idea of the 
pull-out technique for evaluation of the fibre/matrix interaction is to pull out an 
embedded fibre from the solidified thermoset or thermoplastic resin block in the 
direction perpendicular to it. A steadily increasing force is applied to the free end 
of the fibre with simultaneous monitoring of the load and displacement of the 
process. The three-fibre pull-out technique is a modification of this method [67]. 
Microbonding is, in fact, a variation of the pull-out technique. The difference being 
that the fibre is a polymer microdroplet with a hemispherical form embedded in a 
small amount of polymer; the movement of the microdroplet during the test is 
limited by a microvice plate. Summarizing the features of these techniques, the 
following main disadvantages are apparent [58]: the presence of a meniscus on the 
fibre, the variation of both the microdroplet size and the points of contact (for 
microbonding), the necessity of using matrices with a strain limit at least three times 
that of the fibre, the contradiction between the sophisticated statistical technique to 
characterize the fibre fragment length distribution and the oversimplifying of the 
interphase stress-state representation (for SF fragmentation), frequent fibre crush- 
ing during the test (microindentation), the drawbacks in the treatment of the results 
and also fibre failure during the pull-out technique. (Note that bundles of fibre can 
be used to overcome the last disadvantages [60]). 

It is commonly accepted for all these techniques that the shearing forces on the 
interface fibre/matrix are those responsible for the failure processes. So, one can 
apply the developed thermodynamic description of polymer simple-shear deforma- 
tion to analyse fibre/matrix interaction in composites, in accordance with ideas first 
discussed in Ref. [68]. 

5.2. Pull-out test 

Let us consider the pull-out test (Fig. 5) as being the most developed and reliable 
technique [69]. The debonding process during pull-out consists of two stages: 
debonding (the formation of an interfacial crack) and overcoming the fibre/matrix 
friction (which is due to shrinkage of the cured resin or due to the thermal 
mismatch effect during cooling [70]). 

From a typical experimental curve of the pull-out test (Fig. 6) one can determine 
the force F (stress a) required to overcome the fibre-matrix interaction z 

F = 2xrlu (20) 
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Fig. 5. Scheme of the pull-out test: y, shear parameter; r, fibre radius; I,,, thickness of the united 

El matrix 

Esi united interlace/matrix layer 

0 fibre 

pull-out direction 

interface/matrix layer; o, pull-out strength. 
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Fig. 6. Schematic representation of applied stress u versus displacement during single-fibre pull-out test 

[69] for: (a) totally unstable (L <I,,,); (b) partially stable (L r I,,,,,); and (c) totally stable (C,, x 0) 

debond process. L is the total fibre length, (ra is the frictionless debond stress, Q~ is the maximum debond 

stress, of is the frictional pull-out stress, and I,,,,, is the maximum bond length. 

where c is the interfacial shear stress and r and 1 are, respectively, the fibre radius 
and embedded length. To prevent fibres breaking during the test, the tensile stress 
in pull-out sould be less than the fibre ultimate tensile stress ofU, that is, taking into 
account Eq. (20), the maximum embedded fibre length I,,,,, should be less than 
ar,r/2z [60]. 

Eq. (20), obtained assuming uniform shear stress, is the simplest mechanical 
equation of the pull-out process. However, for an elastic matrix the tensile forces 
are no longer uniform, instead a hyperbolic distrubution of the load along the 
embedded fibre is found [71]. Moreover, it does not represent the deformation 
dependence of the force (strength); rather, it deals with ultimate values only. 
Obviously, to describe the deformation energetics of a pull-out test one needs to 
analyse an appropriate equation of state, in the same manner as performed for 
polymer networks and glasses. 
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52.1. Equations of state 

There are several theoretical approaches to describe the pull-out process that can 
be separated in accordance with the shear debonding criterion used, i.e. the 
maximum shear stress approach (based on the “shear-lag” model) and the energetic 
approach [69]. The recently developed improved Zhou-Kim-Mai model for fibre 
pull-out and interfacial debonding [72] unites these two approaches, also account- 
ing for the dependence of debond stress on debond length. However, it is possible 
to divide the existing theories into those based on the models of catastrophic and 
two-step debonding [71]. It should be noted that normal stresses (caused, for 
example, by shrinkage processes) also contribute to fibre/matrix interface mechan- 
ics. Banbaji’s generalized theory [71] attempts to introduce normal stresses into the 
equation of the state for the pull-out test. One can use Banbaji’s theoretical 
constitutive state equations for a thermodynamic analyses of the pull-out process. 

However, the fibre/matrix system is rather complex, so that all the known 
theories are based on some simplifications. For example, the same elastic properties 
for the fibre and matrix are assumed in the Banbaji and Greszczuk-Lawrence 
models [58,71], the increase in the interfacial fracture toughness with the debond 
length was not accounted for in Gao-Mai-Cotterell’s and Hsueh’s models [69] 
(which means that crack propagation does not occur exactly along the fibre 
direction, the failure occurring instead within the interface). Nor was the effect of 
the fibre radius relative to that of the matrix examined in the two last models (in 
spite of the experimental finding of this effect [73]). The most detailed Zhou-Kim- 
Mai model still requires some simplifications, namely, that the fibre has a precisely 
cylindrical shape, and that both matrix and fibre are perfectly elastic and isotropic; 
another assumption concerns the fibre/matrix interface which is assumed to be 
either perfectly bonded or totally debonded. One must bear in mind the contribu- 
tion of the matrix plastic flow around the fibre [59] (this yielding process is most 
important for short-length fibres [74]), the effect of the interface stiffness on its 
thickness and moduli [66,72], and also the influence of the slipping. 

In addition the problems concerning the theoretical treatment of the pull-out 
experiments, there are problems associated with the properties of the interphase 
materials, which are seldom measured accurately, [69]. The nature of the interphase 
itself is one of the most crucial questions. Some authors [66] consider three sets of 
material properties to model the interphase, namely, the soft, stiff and no interface 
cases. In other’s opinion [69], the interphase is softer than the bulk material. 
However, the presence of the fibre significantly increases the modulus close to the 
fibre interphase. The interphase thickness is also unclear. Different authors take it 
to be from 0.0010, to O.O5D, for different composite systems [66], where Df is the 
fibre diameter. 

5.2.2. Thermodynamics of interphase shear deformation 
Let us consider the most simple case of the debonding (the first part of the 

pull-out process followed by friction) as a result of single-fibre pull-out from the 
matrix (Fig. 5). As mentioned, it is not clear to what extent an interphase penetrates 
into both the matrix and the fibre; its properties and their changes within the matrix 
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are still unknown. Thus, for thermodynamic analyses one has to use some simplified 
model. Let us separate the “united” matrix/interface layer involved in the simple 
shear deformation. This layer itself is assumed to be purely elastic, and the stress 
distribution along the fibre is considered to be uniform. Also, the fibre is supposed 
to be much stiffer in comparison with the above “united” layer, so that all the shear 
deformation is a result of the displacement of this uniform layer. Normal stresses 
are not considered. Poisson contraction is ignored and the yielding is excluded. Let 
us first consider the glassy united layer. 

Having used the thermodynamic relations (2) and (3), where m is now the mass 
of the united layer with thickness lo, m = 7&1(2r + I,), we arrive at the simplest 
thermodynamic description of the isobaric-isothermic pull-out process 

W = [Gxl(2r + 1,)/2Z,]y2 (21) 

Q,,T = WCC, T (22) 
where r is the fiber radius, y the current displacement and G the united layer shear 
modulus. 

The same analysis for the rubber united-matrix/interface layer leads to the results 

W = [Gnl(2r + Z,,)/2Z&’ (23) 

Q P.TJo = - W(l +a,T-/?T) (24) 

Here G is determined from the original stress-displacement curves, while lo can be 
chosen by the least-squares fit of the experimental W values. (It is important to note 
that in this way one can obtain additional information concerning the interphase 
thickness.) To account for cases of large deformation one can introduce to Eqs. 
(21)-(24) the D (4) function, Eq. (12), instead of the square term. However, the 
deformation is still considered elastic. 

The interesting observation here is the different signs of the thermoelastic effects 
for the supposed rubber and glassy united layers, which may provide additional 
information about their nature. The thermoelastic contribution of the fibres can be 
separated by means of routine uniaxial extension measurements. 

(It should be noted that thermoelastic analysis for the friction process was also 
carried out, for both simple linear and non-linear models [70]. However, the friction 
does not deal directly with the sample shear deformation mode, which is now 
receiving attention.) 

6. Conclusions 

The modern polymer elasticity and thermoelasticity theories are briefly consid- 
ered and a short review of the existing tests for evaluation of the adhesive strength 
of AJ and fibre/matrix interactions in composite materials is presented. The 
theoretical thermodynamic treatment of simple shear deformation for both polymer 
networks and glasses is reported. A comparison with the usual uniaxial stretching 
deformation mode is carried out. The outstanding feature of the simple shear 


